Abstract
Traumatic brain injury (TBI) is a major public health issue. The complexity of TBI has precluded the use of effective therapies. Hyperbaric oxygen therapy (HBOT) has been shown to be neuroprotective in multiple neurological disorders, but its efficacy in the management of TBI remains controversial. This review focuses on HBOT applications within the context of experimental and clinical TBI. We also discuss its potential neuroprotective mechanisms. Early or delayed multiple sessions of low atmospheric pressure HBOT can reduce intracranial pressure, improve mortality, as well as promote neurobehavioral recovery. The complimentary, synergistic actions of HBOT include improved tissue oxygenation and cellular metabolism, anti-apoptotic, and anti-inflammatory mechanisms. Thus HBOT may serve as a promising neuroprotective strategy that when combined with other therapeutic targets for TBI patients which could improve long-term outcomes.